この度は、弊社の「数学 大学入試問題解答集 2017 国公立大編」におきまして、下記の通りの誤りがございました。皆様にはご迷惑をおかけしますことをお詫びいたします。(最終更新 2017/10/22)

正誤表

ページ	箇所	誤	正
P.6	数学I 数学A 【数と式・2 次関数】	愛知医大	藤田保健衛生大
P.8	数学I 数学A 【整数問題】	広島大・理系4	広島大・理系 5
P.49	6 ▶解答◀ 最終行	$x \neq 0$	$x \neq 2$
p.54	3 ▶解答◀ (4)6,10行目	復号 (2 箇所)	複号
P.70	8	修正	【加筆および修正 1】参照
P.74	1 ▶解答◀ 最終行	加筆	$d_{\rm P,Q}$ は,最大値 $\frac{8}{\sqrt{16}}=2$
			をとる.
P.144	3 ▶解答◀(2)10行目	0, 1, <i>t</i> のどれか	0, −1, t のどれか
P.144	3 ▶解答◀(2)11 行目	$t=1, 0, \frac{1}{2}$	$t=\frac{1}{2}, 1, 2$
P.160	3 ▶解答◀(1) 図1, 図2	修正	【修正および加筆 2】参照
p.172	2 ◆別解◆ 左段最終行	図 4 は	図5は
P.172	2 ◆別解◆ 右上の図	図中の「図 5」	図 6
P.172	2 ◆別解◆ 右上の図	図中の「53」(6箇所)	「50」
P.172	2 ◆別解◆ 右段4行目	図5で,	図6で,
P.236	1 ▶解答◀ (1)4行目	p + q + r = 64	p + q + r = 6
P.278	6 ◆別解◆ 8 行目	$t - \frac{\sin 4t}{4} - \frac{\sin 4t}{4}$	$\left[t - \frac{\sin 2t}{4} - \frac{\sin 4t}{4}\right]$
		$\left[t - \frac{\sin 4t}{4} - \frac{\sin 4t}{4} + \frac{\sin 6t}{12}\right]_{\frac{\pi}{2}}^{0}$	$\begin{bmatrix} t - \frac{\sin 2t}{4} - \frac{\sin 4t}{4} \\ + \frac{\sin 6t}{12} \end{bmatrix}_{\frac{\pi}{2}}^{0}$
p.309	8 ▶解答◀ (1)の図2, (2)	- ₂ 修正	- ½ 【修正および加筆 3】参照
P.373	2 ▶解答◀ (1)6,7行目	不等式中の「≦」2 箇所	ا
P.373	2 ▶解答◀ (2)34, 35 行目	不等式中の「≦」2 箇所	ا
P.457	2 ▶解答◀ (3)21 行目	b = 1 であるがこれを	b = 1 であるがこれを
		$a^2-2b^2=1$ に代入する	$a^2 - 2b^2 = -1$ に代入する
		と $a^2 = 3$ となり a が整数	と $a^2=1$ となり $a=\pm 1$
		であることに反する.	となるが、 $1 < a + b\sqrt{2} <$
			$1+\sqrt{2}$ に代入すると成立
		3	しない.
P.462	6 ▶別解▶ (3)11 行目	$ \left[\sin \theta \right]_0^{\frac{3}{2}} $ $ f\left(\frac{5}{4}\pi \right) = -\frac{1}{\sqrt{2}} e^{-\frac{\pi}{4}} $	$\left[\sin\theta\right]^{\frac{\sigma}{2}\pi}$
P.475	4 ▶解答◀ (1)8行目	$f\left(\frac{5}{7}\pi\right) = -\frac{1}{4}\rho^{-\frac{\pi}{4}}$	$f\left(\frac{5}{2}\pi\right) = -\frac{1}{4}\rho^{-\frac{5}{4}\pi}$
1,410	(1) 0 H D	$\sqrt{2}^{\epsilon}$	$\sqrt{2}^{\epsilon}$

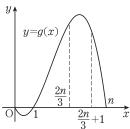
箇所 ページ $\frac{1}{\left(1 - \frac{t}{\sqrt{2}}, \frac{t}{2}, t\right)} \qquad \left(1 - \frac{t}{\sqrt{2}}, \frac{t}{\sqrt{2}}, t\right)$ $R\left(-1 + \frac{t}{\sqrt{2}}, \frac{t}{2}, t\right) \qquad R\left(-1 + \frac{t}{\sqrt{2}}, \frac{t}{\sqrt{2}}, t\right)$ $S\left(-1 + \frac{t}{\sqrt{2}}, -\frac{t}{2}, t\right) \qquad S\left(-1 + \frac{t}{\sqrt{2}}, -\frac{t}{\sqrt{2}}, t\right)$ $T\left(1 - \frac{t}{\sqrt{2}}, -\frac{t}{2}, t\right) \qquad T\left(1 - \frac{t}{\sqrt{2}}, -\frac{t}{\sqrt{2}}, t\right)$ 3 ▶解答◀ (1)3行目 P.479 3 ▶解答◀ (2)3行目 P.479 3 ▶解答◀ (2)4行目 3 ▶解答◀ (2)(i)図 P.520 【修正および加筆4】参照 1 ▶解答 (4)23 行目 P.560 (3, 3, 110), (3, 110, 3),(3, 3, 110), (3, 110, 3),(3, 3, 110)(110, 3, 3)6 ▶解答◀ (2)4行目 $a_2 = 3 \cdot 3 + 1 = 1$ $a_2 = 3 \cdot 3 + 1 = 10$ p.596

【修正および加筆1】

p(k) の分子の k の部分を x に置きかえた関数

$$g(x) = x(x-1)(n-x), 0 \le x \le n$$

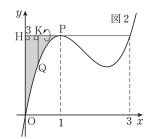
を考える.


$$g(x) = (x^{2} - x)n - (x^{3} - x^{2})$$

$$g'(x) = -3x^{2} + 2nx - n + 2x$$

$$g'\left(\frac{2n}{3}\right) = \frac{n}{3} > 0$$

$$g'\left(\frac{2n}{3} + 1\right) = -\frac{5n}{3} - 1 < 0$$


よって x を整数変数に限定したとき, g(x) は $x = \frac{2n}{3}$ または $x = \frac{2n}{3} + 1$ で最大になる.

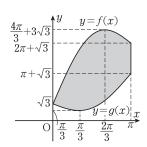
【修正および加筆2】

【修正および加筆3】

(2) 図 2 で $\mathbf{Q}(x,y)$ とすると $\mathbf{K}(x,3)$ で、 $\mathbf{Q}\mathbf{K}=3-y$ である.

$$y - 3 = x^{3} - 5x^{2} + 7x - 3 = (x - 1)^{2}(x - 3)$$

$$(y - 3)^{2} = (x - 1)^{4}(x - 1 - 2)^{2}$$


$$= (x - 1)^{6} - 4(x - 1)^{5} + 4(x - 1)^{4}$$

$$V = \int_{0}^{1} \pi (y - 3)^{2} dy$$

$$= \pi \left[\frac{(x - 1)^{7}}{7} - \frac{2(x - 1)^{6}}{3} + \frac{4(x - 1)^{5}}{5} \right]_{0}^{1}$$

$$= \pi \left(\frac{1}{7} + \frac{2}{3} + \frac{4}{5} \right) = \frac{169}{105} \pi$$

【修正および加筆4】

