の符号は x=0, $-\frac{3}{2}$ (境界という) の前後で変わる. x>0 のときは x>0, 2x+3>0, $\frac{2x+3}{x}>0$ となり, 不適. $-\frac{3}{2}< x<0$ では分母の符号だけ変わるから, 適す. $x<-\frac{3}{2}$ では 2x+3 の符号も変わるから不適となる

通常,各因子は $1 \times ((2x+3)^2)$ などになっていないということ)だから,境界を飛び越える度に適と不適を交代する.

【集合の雑題】

- 《要素から調べる(A5)》-

87. a を実数とし、2 つの集合

$$A = \{-2, 3a - 5, a^2 - 3a - 11, a^2 - 7a + 7\}$$

$$B = \{1, 2, a^2 - 8a + 19\}$$

$$A \cap B = \{1, 7\}$$

において、 $A\cap B=\{1,7\}$ とする.このとき $a=\square$ であり、 $A\cup B$ の要素のうち最大のものは \square である. (25 玉川大)

▶解答 $A \cap B = \{1, 7\}$ であるから、 $7 \in B$ である。 よって $a^2 - 8a + 19 = 7$ となるから

$$a^2 - 8a + 12 = 0$$

$$(a-2)(a-6) = 0$$
 : $a = 2.6$

a=2 のとき $A=\{-2,1,-13,-3\}$ となり,a=6 のとき $A=\{-2,13,7,1\}$ となるが, $A\cap B=\{1,7\}$ となるのは a=6 のときである.このとき

$$A \cup B = \{-2, 1, 2, 7, 13\}$$

であるから $A \cup B$ の要素で最大のものは 13 である.

- 《不等式の解 (A5)》-

88. すべての実数を要素とする全体集合 *U* と,次 のような *U* の部分集合 *A*. *B* がある.

 $A = \{k \mid x \text{ o } 2 \text{ 次方程式 } x^2 + 2kx + 4 = 0 \text{ が実数}$ 解をもつ $\}$

 $B = \{k \mid x \text{ od } 2 \text{ 次方程式 } x^2 + 2(k+1)x + 4 = 0$ が実数解をもつ \}

- (1) $A \cap B = \{k \mid k \leq -\square, \square \leq k\}$ である.
- $(2) \quad \overline{A} \cup \overline{B} = \{k \mid \square < k < \square\} \text{ cass.}$
- (3) $\overline{A} \cap B = \{k \mid \prod \leq k < \prod\}$ $\forall b \leq b$.
- (4) $A \cup \overline{B} = \{k \mid k < \square, \square \leq k\}$ である. (25 国際医療福祉大・看護ほか)

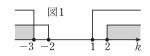
▶解答 $x^2 + 2kx + 4 = 0$ の判別式を D_A とすると、 $\frac{D_A}{A} = k^2 - 4$ で、A の条件を満たすのは $\frac{D_A}{A} \ge 0$

であるから

$$A = \{k \mid k \le -2, k \ge 2\}$$

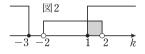
 $x^2+2(k+1)x+4=0$ の判別式を D_B とすると, $\frac{D_B}{4}=(k+1)^2-4$ で,B の条件を満たすのは $\frac{D_B}{4}\geq 0$ であるから $B=\{k\mid k\leq -3,\,k\geq 1\}$

(1) $A \cap B = \{ k \mid k \leq -3, 2 \leq k \}$



- (2) $\overline{A} \cup \overline{B} = \overline{A \cap B} = \{k \mid -3 < k < 2\}$

$$\overline{A} \cap B = \{ \mathbf{k} \mid 1 \leq \mathbf{k} < 2 \}$$



 $(4) \quad A \cup \overline{B} = \overline{\overline{A} \cap B} = \{ k \mid k < 1, 2 \leq k \}$

【必要・十分条件】

- 《対偶が有効 (B15) ☆》 =

89. *a* を正の実数とする. 実数 *x* に関する条件 *p* および *q* を

$$p: |2x-1| \le 2$$

$$q: x^2 - \frac{5}{4}x \le a$$

と定める。

- (1) p が q であるための必要条件であるような a の範囲を求めよ.
- (2) pがqであるための十分条件であるようなaの範囲を求めよ. (25 学習院大・法)

▶解答 (1) $p t t -2 \le 2x - 1 \le 2$

$$-\frac{1}{2} \le x \le \frac{3}{2}$$

となる. $q \longrightarrow p$ であるようにする. q には未知の a がある. 議論の方向を変えるために対偶をとると $p \longrightarrow q$ である.

$$x<-\frac{1}{2}\ \sharp \text{ toli}\ x>\frac{3}{2} \Longrightarrow x^2-\frac{5}{4}x>a$$

実数 x を含む条件 r(x), s(x) について,

$$r(x) \Longrightarrow s(x)$$

とは、x が r(x) を満たすならば s(x) も満たす。 つまり、 $x<-\frac{1}{2}$ 、 $x>\frac{3}{2}$ のどちらの x をとってきてもすべて $x^2-\frac{5}{4}x>a$ を満たすということである。

$$f(x) = x^2 - \frac{5}{4}x$$
 とおく.

$$f\left(-\frac{1}{2}\right) = \frac{7}{8}, f\left(\frac{3}{2}\right) = \frac{3}{8}$$